Preparation and X-Ray Crystal Structure of $Se_2I_4(Sb_2F_{11})_2$ containing the Eclipsed Diselenium Tetraiodide(2+) Cation

W. A. Shantha Nandana, Jack Passmore,* Peter S. White,* and Chi-Ming Wong

Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2

 $Se_2I_4(Sb_2F_{11})_2$ has been prepared and its structure determined by single crystal X-ray diffraction; the $Se_2I_4^{2+}$ cation has an eclipsed $S_2O_4^{2-}$ type structure with two SeI_2^+ units joined by a weak selenium–selenium bond [2.841(2) Å] and very weak iodine–iodine interactions [3.756(2), 3.661(2) Å].

Recently the salts $S_7 IMF_6$ (M = As, Sb),¹ [($S_7 I$)₂I] (SbF₆)₃·2As-F₃,^{2,3} ($S_7 I$)₄ S_4 (AsF₆)₆,^{3,4} and $S_2 I_4$ (AsF₆)₂⁵ containing novel sulphur-iodine cations have been prepared and characterised. $S_2 I_4$ (AsF₆)₂ contains a distorted right triangular prismatic $S_2 I_4^{2+}$ cation with sulphur-sulphur and iodine-iodine bond lengths indicative of bond orders 2.33 and 1.33, respectively. The cation may be regarded as consisting of $S_2^{0.66+}$ and $2 I_2^{0.66+}$ units, weakly bonded together by electrons in π^* orbitals. Thus, π bonding in each dimer unit is maximized. The bonding situation may arise from the near equality of the ionization potentials (I.P.) of S_2 [9.36(2) eV] and I_2 [9.3995(12) eV].⁶ To explore this hypothesis, we attempted to synthesize analogous cations. In one reaction we prepared $Se_2 I_4(Sb_2F_{11})_2$ [I.P. Se₂ 8.88(3) eV]⁶ quantitatively according to equation (1). The structure was determined by X-ray diffraction.

$$2I_2Sb_2F_{11}(ref. 7) + 2Se \xrightarrow{SO_2} Se_2I_4(Sb_2F_{11})_2 \qquad (1)$$

room temp.

Crystal Data: Se₂I₄(Sb₂F₁₁)₂, M = 1570.50, triclinic, space group $P\overline{1}$ (C_i^{1}), a = 17.915(2), b = 9.276(1), c = 8.001(1) Å, $\alpha = 96.04(1)$, $\beta = 95.22(1)$, $\gamma = 91.83(1)^\circ$, U = 1316 Å³, Z = 2, $D_c = 3.97$ Mg m⁻³, μ (Mo- K_{α}) = 11.62 mm⁻¹, λ (Mo- K_{α}) = 0.710 69 Å. Data were collected for 5° $\leq 2\theta \leq 45^\circ$, 3438 unique reflections, 2647 observed ($I \geq 2\sigma$).

The data were corrected for absorption and the structure was solved by direct methods. Least-squares refinement, with anisotropic thermal parameters for all atoms, gave final residuals: R = 0.046 and $R_w = 0.067$.[†] The structure con-

Figure 1. Structure of Se₂I₄²⁺. Bond lengths and angles: Se(1)–Se(2) 2.841(2), Se(1)–I(1) 2.450(2), Se(1)–I(2) 2.436(2), Se(2)–I(3) 2.457(2), and Se(2)–I(4) 2.443(2) Å; I(1)–Se(1)–I(2) 106.95(8), I(3)–Se(2)–I(4) 105.47(8), I(1)–Se(1)–Se(2) 100.47(7), I(2)–Se(1)–Se(2) 98.07(7), I(3)–Se(2)–Se(1) 101.03(7), and I(4)–Se(2)–Se(1) 101.26(7)°. Contacts (I–I ≤ 4.00 , I–F ≤ 3.10 , and Se–F ≤ 3.00 Å): I(1)–I(3) 3.756(2), I(2)–I(4) 3.661(2), I(1)–I(2) 3.926(2), I(3)–I(4) 3.899(2), I(1)–F(24) 2.998(12), I(2)–F(2) 3.080(11), I(3)–F(28) 2.888(11), I(4)–F(3) 2.955(11), Se(1)–F(1) 2.835(10), Se(1)–F(8) 2.915(13), Se(1)–F(23) 2.909(11), Se(2)–F(1) 2.988(12), and Se(2)–F(23) 2.922(11) Å. Torsion angles: I(1)–Se(1)–Se(2)–I(3) 1.7 and I(2)–Se(1)–Se(2)–I(4) 2.3°.

[†] The atomic co-ordinates for this work are available on request from Prof. Dr. G. Bergerhoff, Institut für Anorganische Chemie, Universität, Gerhard-Domagk-Str. 1, D-5300 Bonn 1, West Germany. Any request should be accompanied by the full literature citation for this communcation.

sists of discrete $Se_2I_4^{2+}$ and $Sb_2F_{11}^{-}$ ions with definite anion-cation interactions.

The eclipsed structure of the Se₂I₄²⁺ cation (Figure 1) only superficially resembles that of S₂I₄²⁺. It can be described as two SeI₂⁺ units joined by a long Se–Se bond [2.841(2) Å] similar in length to the transannular bond in Se₈²⁺ [2.84(1) Å]⁸ and the shorter selenium–selenium bond in Se₄N₄ [2.748(9) Å]⁹ and considerably longer than that in Se₈ (α) [2.336(6) Å].¹⁰ This structure is similar to that of S₂O₄²⁻,^{11,12} the bonding in which is of considerable interest.^{13,14} The S–S bond in S₂O₄²⁻ [2.389,¹¹ 2.386(2) Å¹²] is much longer than that in S₈ [2.05 Å].¹⁴ The arrangement of atoms about the long bond between tricoordinate selenium atoms in Se₈²⁺ and Se₄N₄, and analogous sulphur atoms in S₈^{2+,15} S₄N₄,¹⁶ and S₂O₄²⁻ are, like the iodine atoms in Se₂I₄²⁺ may be described by valence bond (V.B.) structure I,

with small contributions from structures II and III. [I(1)-I(3)]and I(2)-I(4) are 3.756(2) and 3.661(2) Å, respectively, significantly less than twice the sum of the van der Waals' radius of iodine of 4.00 Å¹⁷]. The selenium-selenium bond in Se₂I₄²⁺ is longer than that in Se₈, possibly because of the presence of positive charges on adjacent selenium atoms (I), and, in addition, because the selenium-selenium bond order is less than one (as implied by V.B. structures II and III). Alternatively, the Se₂I₄²⁺ cation may be regarded as two SeI₂⁺ radical cations, joined, in part, by overlap of the odd electron in each of the π^* SeI₂⁺ molecular orbitals (see Figure 2) resulting in some bonding between all six atoms and a formal selenium-

Figure 2. The Sel₂⁺ radical cation's π M.O.'s derived from p_z selenium and iodine A.O.'s.

iddine bond order of 1.25 (net 0.5 π bond per SeI₂⁺ unit, see Figure 2). Interestingly, the selenium-iodine bond lengths in $Se_2I_4^{2+}$ [2.450(2), 2.436(2), 2.457(2), and 2.443(2) Å] are somewhat shorter than those in SeI_3^+ [2.511(2), 2.513(2), and 2.510(2) Å] in SeI₃SbF₆.¹⁸ Both of these approaches account for the eclipsed geometry of the $Se_2I_4^{2+}$ cation. $Se_2I_4^{2+}$ is clearly very different from its $S_2I_4^{2+}$ analogue; although both have cluster-like characteristics, both may contain $\pi^* - \pi^*$ bonds, and both are different from the isoelectronically similar but conventional σ -bonded trans-P₂I₄.¹⁹

This is the first reported structural determination of a binary selenium-iodine species although salts of SeI3+20 and Sel₆²⁻²¹ have been prepared previously. Binary neutral selenium iodides have not been isolated.22

We thank the Natural Sciences and Engineering Research Council (Canada) for financial support.

Received, 7th June 1982; Com. 651

References

- 1 J. Passmore, P. Taylor, T. K. Whidden, and P. S. White, J. Chem. Soc., Chem. Commun., 1976, 689; J. Passmore, G. Sutherland, P. Taylor, T. K. Whidden, and P. S. White, Inorg. Chem., 1981, 20, 3839.
- 2 J. Passmore, G. Sutherland, and P. S. White, J. Chem. Soc., Chem. Commun., 1979, 901.
- 3 J. Passmore, G. Sutherland, and P. S. White, Inorg. Chem., 1982, 21, 2717.
- 4 J. Passmore, G. Sutherland, and P. S. White, J. Chem. Soc., Chem. Commun., 1980, 330.
- 5 J. Passmore, G. Sutherland, T. K. Whidden, and P. S. White, J. Chem. Soc., Chem. Commun., 1980, 289.

- 6 H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data, 1977, 6, suppl. 1.
- 7 J. Passmore, E. K. Richardson, and P. Taylor, J. Chem. Soc., Dalton Trans., 1976, 1006; C. G. Davies, R. J. Gillespie, P. R. Ireland, and J. M. Sowa, Can. J. Chem., 1974, 52, 2048 and references therein.
- 8 R. K. McMullan, D. J. Prince, and J. D. Corbett, Inorg. Chem., 1971, 10, 1749.
- 9 H. Bärnighausen, T. v. Volkmann, and J. Jander, Acta Crystallogr., 1966, 21, 571.
- 10 P. Cherin and P. Unger, Acta Crystallogr., Sect. B, 1972, 28, 313
- 11 J. D. Dunitz, Acta Crystallogr., 1956, 9, 579.
- 12 C. Th. Kiers and A. Vos, Acta Crystallogr., Sect. B, 1978, 34, 1499
- 13 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 4th edn., Interscience, Toronto, 1972, p. 535.
- 14 R. Steudel, Angew. Chem., Int. Ed. Engl., 1975, 14, 655 and references therein.
- 15 C. G. Davies, R. J. Gillespie, J. J. Park, and J. Passmore, Inorg. Chem., 1971, 10, 2781.
- 16 B. D. Sharma and J. Donohue, Acta Crystallogr., 1963, 16, 891; M. L. DeLucia and P. Coppens, Inorg. Chem., 1978, 17, 2336.
- 17 A. Bondi, J. Phys. Chem., 1964, 68, 441.
- 18 W. A. S. Nandana, J. Passmore, P. S. White, and C.-M. Wong, unpublished results. 19 Y. C. Leung and J. Waser, J. Phys. Chem., 1956, 60, 539.
- 20 J. Passmore and P. Taylor, J. Chem. Soc., Dalton Trans., 1976, 804.
- 21 N. N. Greenwood and B. P. Straughan, J. Chem. Soc. A, 1966, 962.
- 22 W. E. Dasent, 'Nonexistent Compounds,' Marcel Dekker, New York, 1965, p. 163.